钠离子电池软硬碳负极材料研究进展
◆ ◆ ◆ ◆ ◆
作者:
曾 杰,2023级硕士研究生,就读于南昌工程学院电气工程学院,研究方向:新能源发电与电能存储,融合军队历练的强执行力与学术科研的系统性思维,聚焦新型电力系统储能技术领域,在校期间发表论文6篇,获得省学业奖学金一次;
彭 望,男,中共党员,南昌工程学院2023级电气工程专业硕士研究生,研究生院第六学生党支部副书记,研究方向:新能源发电与电能存储,在校期间多次获得优秀学生干部,三好学生等荣誉,参与发表含核心类文章6篇,参与国家自然科学基金1项,全国重点实验室开放课题1项。
Abstract:Because of the scarcity of lithium in the earth's crust,the price of lithium-ion batteries rises, so it is urgent to find a product that can replace lithium-ion batteries. Based on similar working principles, sodium-ion batteries, as a high-profile energy storage technology, have the potential to play an important role in the field of large-scale energy storage. As one of the key components of sodium-ion batteries, anode materials directly affect the performance of batteries. At present, hard carbon anode materials are being studied and discussed, and many hard carbon anode materials are being used in sodium-ion battery industry all over the world. However, hard carbon materials have some defects, such as low first coulomb efficiency, poor electronic conductivity and poor cycle stability. Compared with hard carbon materials, soft carbon materials have better power properties and electrical conductivity, but their low reversible capacity limits their commercialization. The two kinds of anode materials have their own unique advantages and defects, while the soft-hard carbon composites play their advantages and bridge the defects between them to a certain extent, showing the application potential in the field of anode materials for sodium-ion batteries.
Keywords: Sodium-ion battery; Hard carbon; Soft carbon; Soft-hard carbon composite
硬碳负极材料
1.1 硬碳的缺陷及改性研究
1.2 硬碳前驱体
1.3 硬碳储钠机理
软碳负极材料
2.1 软碳材料的缺陷及优化研究
2.2 软碳储钠机理
软硬碳复合材料
3.1 软硬碳材料的优势及研究进展
3.2 软硬碳复合材料制备方法
总结与展望
参考文献
[1] Hou H, Qiu X, Wei W, et al. Carbon anode materials for advanced sodium-ion batteries[J]. Advanced energy materials, 2017,7(24):1602898.
[2] 郭晋芝, 万放, 吴兴隆, 等. 钠离子电池工作原理及关键电极材料研究进展[J]. 分子科学学报, 2016,32(4):265-279.
[3] Xiaotong W, Dongwei C, Wenpei K, et al. Embedding ZnS in N-doped-carbon frameworks decorated with Co4S3 nanoparticles for efficient sodium storage[J]. Applied Surface Science, 2021,552 :149494.
[4] 王晶良. 硬碳-软碳复合材料的储钠性能[J]. 电池, 2023,53(4):416-418.
[5] Oberlin A, Terriere G. Graphitization studies of anthracites by high resolution electron microscopy[J]. Carbon, 1975,13(5):367-376.
[6] 李旭升. 钠离子电池碳负极材料的制备及储钠性能研究[D]. 徐州:中国矿业大学, 2022: 10-12.
[7] 张丽君, 时志强. 钠离子电池硬炭负极材料的研究进展[J]. 山东化工, 2021,50(19):85-86.
[8] Chu Y, Zhang J, Zhang Y, et al. Reconfiguring Hard Carbons with Emerging Sodium-Ion Batteries: A Perspective[J]. Advanced Materials, 2023,35(31):2212186.
[9] Luo W, Bommier C, Jian Z, et al. Low-Surface-Area Hard Carbon Anode for Na-Ion Batteries via Graphene Oxide as a Dehydration Agent[J]. ACS Applied Materials & Interfaces, 2015,7(4):2626-2631.
[10] Xu R, Sun N, Zhou H, et al. Hard carbon anodes derived from phenolic resin/sucrose cross-linking network for high-performance sodium-ion batteries[J]. Battery Energy, 2023,2(2):20220054.
[11] Gan Q, Qin N, Gu S, et al. Extra Sodiation Sites in Hard Carbon for High Performance Sodium Ion Batteries[J]. Small Methods, 2021,5(9):2100580.
[12] 唐晶晶, 李晓滢, 陈言蹊, 等. 钠离子电池生物质基硬碳负极材料的研究进展[J]. 材料导报, 2023:1-25.
[13] Xu Z, Du S, Yi Z, et al. Water Chestnut-Derived Slope-Dominated Carbon as a High-Performance Anode for High-Safety Potassium-Ion Batteries[J]. ACS Applied Energy Materials, 2020,3(11):11410-11417.
[14] Zhang H, Zhang W, Ming H, et al. Design advanced carbon materials from lignin-based interpenetrating polymer networks for high performance sodium-ion batteries[J]. Chemical Engineering Journal, 2018,341:280-288.
[15] Li Y, Xu S, Wu X, et al. Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2015,3(1):71-77.
[16] Kamiyama A, Kubota K, Nakano T, et al. High-Capacity Hard Carbon Synthesized from Macroporous Phenolic Resin for Sodium-Ion and Potassium-Ion Battery[J]. ACS Applied Energy Materials, 2020,3(1):135-140.
[17] Song N, Guo N, Ma C, et al. Modulating the Graphitic Domains and Pore Structure of Corncob-Derived Hard Carbons by Pyrolysis to Improve Sodium Storage[J]. Molecules, 2023,28(8):3595.
[18] Chen M, Luo F, Liao Y, et al. Hard carbon derived for lignin with robust and low-potential sodium ion storage[J]. Journal of Electroanalytical Chemistry, 2022,919:116526.
[19] Yu K, Wang X, Yang H, et al. Insight to defects regulation on sugarcane waste-derived hard carbon anode for sodium-ion batteries[J]. Journal of Energy Chemistry, 2021,55:499-508.
[20] Zhu X, Jiang X, Liu X, et al. A green route to synthesize low-cost and high-performance hard carbon as promising sodium-ion battery anodes from sorghum stalk waste[J]. Green Energy & Environment, 2017,2(3):310-315.
[21] Qin L, Xu S, Lu Z, et al. Cellulose as a novel precursor to construct high-performance hard carbon anode toward enhanced sodium-ion batteries[J]. Diamond and Related Materials, 2023,136:110065.
[22] Song Z, Li F, Mao L, et al. Sustainable Fabrication of a Practical Hard Carbon Anode for a Sodium-Ion Battery with Unprecedented Long Cycle Life[J]. ACS Sustainable Chemistry & Engineering, 2023,11(41):15020-15030.
[23] Wang K, Jin Y, Sun S, et al. Low-Cost and High-Performance Hard Carbon Anode Materials for Sodium-Ion Batteries[J]. ACS Omega, 2017,2(4):1687-1695.
[24] Lakienko G P, Bobyleva Z V, Apostolova M O, et al. Sosnowskyi Hogweed-Based Hard Carbons for Sodium-Ion Batteries[J] Batteries. 2022,8(10):131
[25] Yin X, Zhao Y, Wang X, et al. Modulating the Graphitic Domains of Hard Carbons Derived from Mixed Pitch and Resin to Achieve High Rate and Stable Sodium Storage[J]. Small, 2022,18(5):2105568.
[26] Bommier C, Surta T W, Dolgos M, et al. New Mechanistic Insights on Na-Ion Storage in Nongraphitizable Carbon[J]. Nano Letters, 2015,15(9):5888-5892.
[27] Stevens D A, Dahn J R. High Capacity Anode Materials for Rechargeable Sodium-Ion Batteries[J]. Journal of The Electrochemical Society, 2000,147(4):1271.
[28] Cao Y, Xiao L, Sushko M L, et al. Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications[J]. Nano Letters, 2012,12(7):3783-3787.
[29] Bommier C, Surta T W, Dolgos M, et al. New Mechanistic Insights on Na-Ion Storage in Nongraphitizable Carbon[J]. Nano Letters, 2015,15(9):5888-5892.
[30] Chen X, Tian J, Li P, et al. An Overall Understanding of Sodium Storage Behaviors in Hard Carbons by an “Adsorption-Intercalation/Filling” Hybrid Mechanism[J]. Advanced Energy Materials, 2022,12(24):2200886.
[31] Zhang L, Wang W A, Lu S, et al. Carbon Anode Materials: A Detailed Comparison between Na-ion and K-ion Batteries[J]. Advanced Energy Materials, 2021,11(11):2003640.
[32] Saurel D, Orayech B, Xiao B, et al. From Charge Storage Mechanism to Performance: A Roadmap toward High Specific Energy Sodium-Ion Batteries through Carbon Anode Optimization[J]. Advanced Energy Materials, 2018,8(17): 1703268.
[33] 李云明. 钠离子储能电池碳基负极材料研究[D]. 北京:中国科学院大学(中国科学院物理研究所), 2017: 85-104.
[34] Han L, Li Z, Yang F, et al. Enhancing capacitive storage of carbonaceous anode by surface doping and structural modulation for high-performance sodium-ion battery[J]. Power Technology, 2021,382:541-549.
[35] Cabello M, Chyrka T, Klee R, et al. Treasure Na-ion anode from trash coke by adept electrolyte selection[J]. JOURNAL OF POWER SOURCES, 2017,347:127-135.
[36] 刘彬华, 王静. 钠离子电池软碳基负极材料研究进展[J]. 山东化工, 2021,50(19):113-114.
[37] Wen Y, He K, Zhu Y, et al. Expanded graphite as superior anode for sodium-ion batteries[J]. Nature Communications, 2014,5(1):4033.
[38] Yan Y, Yin Y, Guo Y, et al. A Sandwich-Like Hierarchically Porous Carbon/Graphene Composite as a High-Performance Anode Material for Sodium-Ion Batteries[J]. Advanced Energy Materials, 2014,4(8):1301584.
[39] Yao X, Ke Y, Ren W, et al. Defect-Rich Soft Carbon Porous Nanosheets for Fast and High-Capacity Sodium-Ion Storage[J]. Advanced Energy Materials, 2019,9(6):1803260.
[40] 李雷. 石油焦和沥青基软硬碳负极材料的制备及储钠性能研究[D]. 镇江:江苏科技大学, 2023:9-10.
[41] Xie F, Xu Z, Jensen A C S, et al. Hard-Soft Carbon Composite Anodes with Synergistic Sodium Storage Performance[J]. Advanced Functional Materials, 2019,29(24):1901072.
[42] Xue Y, Gao M, Wu M, et al. A Promising Hard Carbon-Soft Carbon Composite Anode with Boosting Sodium Storage Performance[J]. ChemElectroChem, 2020,7(19):4010-4015.
[43] Liu X, Zhu Y, Liu N, et al. Catalytic Synthesis of Hard/Soft Carbon Hybrids with Heteroatom Doping for Enhanced Sodium Storage[J]. ChemistrySelect, 2019,4(12):3551-3558.
[44] Liu H, Jia M, Cao B, et al. Nitrogen-doped carbon/graphene hybrid anode material for sodium-ion batteries with excellent rate capability[J]. Journal of Power Sources, 2016,319:195-201.
[45] Li Y M, Hu Y S, Li H, et al. A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2016,4(1):96-104.
[46] Zhang H M, Zhang W F, Ming H, et al. Design advanced carbon materials from lignin-based interpenetrating polymer networks for high performance sodium-ion batteries[J]. Chemical Engineering Journal, 2018,341:280-288.
[47] Li Y, Mu L, Hu Y, et al. Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries[J]. Energy Storage Materials, 2016,2:139-145.
[48] 贺磊, 孙钰仁, 王春雷, 等. 钠离子电池负极用高性能沥青基富硫炭材料(英文)[J]. 新型炭材料, 2020,35(04):420-427.
[49] 姜修宝. 沥青基软碳负极的制备及储钠性能研究[D]. 天津:天津理工大学, 2023:34-37.
[50] 薛艳春, 张俊豪, 郭兴梅, 等. 一种钠离子电池用软硬碳复合多孔负极材料及其制备方法[P].江苏省:CN202010185778.X,2022-06-24.
(来源声明:本文来源于“江西省科学教育学会官方投稿平台”,内容发表严格依据作者原稿,未经作者本人授权,不得擅自转载或修改。)